Sonic Black Hole

Bose® SoundDock® Series II digital music system for iPod® - Black

Researches have created a sonic black hole in the lab. Sound goes in but can't escape.

(PhysOrg.com) -- Black holes get their name because they absorb all incoming light, and are so dense that none of that light can escape their event horizon. In a new study, scientists have created a sonic analogue of a black hole in the lab – that is, a sonic black hole in which sound waves rather than light waves are absorbed and cannot escape. The scientists hope that the short-lived sonic black hole could allow them to observe and study the elusive Hawking radiation that is predicted to be emitted by traditional black holes, which has so far been a very difficult task.

The scientists, Oren Lahav and coauthors from the Technion-Israel Institute of Technology in Haifa, Israel, have published their study on the sonic black hole in a recent issue of .

The researchers created the sonic black hole in a Bose-Einstein condensate made of 100,000 rubidium atoms slowed to their lowest quantum state in a magnetic trap. This cold cluster of atoms acts like a single, large quantum mechanical object. In order to transform this condensate into a sonic black hole, the scientists had to find a way to accelerate some of the condensate to supersonic speeds so that the condensate would contain some regions of supersonic flow and some regions of subsonic flow.